EDIBLE FILM FOR FOOD PACKAGING

Hakimah Nurjanah(1), Hilman Imadul Umam(2*), Teguh Pambudi(3)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang
(*) Corresponding Author

Abstract


The purpose of this review article is to provide information about edible film, materials used, manufacturing methods, application for food packaging, and opportunities for future benefits of edible film. The method used by the author in reviewing this article, is by reading various journals from other authors and write the conclude using author own language. The conclusion is, edible film has potential to replace plastics (synthetic polymers) as food packaging. The ingredients used for edible film production are hydrocolloid (protein, polysaccharides, and alginates), lipid (polysaccharides, and alginates) and composite (mix of hydrocolloid and lipid). The methods for edible film production are wet process and dry process. Edible film can be used as food packaging, including cheese, meat, fish, vegetables, and fruit. Prospect of edible film has the potential to increase in the future because people are realizing the importance of reducing food waste with ecofriendly material as food packaging.


Keywords


Edible film; Environment; Natural Packaging

Full Text:

PDF

References


Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99(5), 1359-1367. https://doi.org/10.1016/j.biortech.2007.01.051

Abka‐khajouei, R., Tounsi, L., Shahabi, N., Patel, A. K., Abdelkafi, S., & Michaud, P. (2022). Structures, Properties and Applications of Alginates. In Marine Drugs, 20(6). https://doi.org/10.3390/md20060364

Alamri, M. S., Qasem, A. A. A., Mohamed, A. A., Hussain, S., Ibraheem, M. A., et al. (2021). Food packaging’s materials: A food safety perspective. Saudi Journal of Biological Sciences, 28(8), 4490-4499). https://doi.org/10.1016/j.sjbs.2021.04.047

Alichanidis, E., Moatsou, G., & Polychroniadou, A. (2016). Composition and Properties of Non-cow Milk and Products. In Non-Bovine Milk and Milk Products (pp. 81–116). https://doi.org/10.1016/B978-0-12-803361-6.00005-3

Alves, V. D., Castelló, R., Ferreira, A. R., Costa, N., Fonseca, I. M., & Coelhoso, I. M. (2011). Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, 1, 240-245. https://doi.org/10.1016/j.profoo.2011.09.038

Apriyanto, A., Compart, J., & Fettke, J. (2022). A review of starch, a unique biopolymer – Structure, metabolism and in planta modifications. In Plant Science, 318. https://doi.org/10.1016/j.plantsci.2022.111223

Bayer, I. S. (2021). Zein in Food Packaging.

Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry. In Food Chemistry. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7

Bharti, S. K., Pathak, V., Arya, A., Alam, T., Rajkumar, V., & Verma, A. K. (2021). Packaging potential of Ipomoea batatas and κ-carrageenan biobased composite edible film: Its rheological, physicomechanical, barrier and optical characterization. Journal of Food Processing and Preservation, 45(2). https://doi.org/10.1111/jfpp.15153

Bhat, M. Y., Dar, T. A., & Singh, L. R. (2016). Casein Proteins: Structural and Functional Aspects. In Milk Proteins - From Structure to Biological Properties and Health Aspects. https://doi.org/10.5772/64187

Bhatia, S., & Bera, T. (2015). Somatic Embryogenesis and Organogenesis. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (pp. 209–230). https://doi.org/10.1016/B978-0-12-802221-4.00006-6

Bonnaillie, L. M., Zhang, H., Akkurt, S., Yam, K. L., & Tomasula, P. M. (2014). Casein films: The effects of formulation, environmental conditions, and the addition of citric pectin on the structure and mechanical properties. Polymers, 6(7), 2018–2036. https://doi.org/10.3390/polym6072018

Bourtoom, T. (2008). Review Article Edible films and coatings: characteristics and properties. In International Food Research Journal, 15(3).

Carpiné, D., Dagostin, J. L. A., Bertan, L. C., & Mafra, M. R. (2015). Development and Characterization of Soy Protein Isolate Emulsion-Based Edible Films with Added Coconut Oil for Olive Oil Packaging: Barrier, Mechanical, and Thermal Properties. Food and Bioprocess Technology, 8(8), 1811-1823. https://doi.org/10.1007/s11947-015-1538-4

Castro, F. V. R., Andrade, M. A., Silva, A. S., Vaz, M. F., & Vilarinho, F. (2019). The contribution of a whey protein film incorporated with green tea extract to minimize the lipid oxidation of salmon (Salmo salar L.). Foods, 8(8). https://doi.org/10.3390/foods8080327

Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

Ceballos, R. L., Ochoa-Yepes, O., Goyanes, S., Bernal, C., & Famá, L. (2020). Effect of yerba mate extract on the performance of starch films obtained by extrusion and compression molding as active and smart packaging. Carbohydrate Polymers, 244. https://doi.org/10.1016/j.carbpol.2020.116495

Chevalier, E., Chaabani, A., Assezat, G., Prochazka, F., & Oulahal, N. (2018). Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate—A comparative study of waxes and potassium sorbate effect. Food Packaging and Shelf Life, 16, 41–50. https://doi.org/10.1016/j.fpsl.2018.01.005

Chiralt, A., González-Martínez, C., Vargas, M., & Atarés, L. (2017). Edible films and coatings from proteins. In Proteins in Food Processing, Second Edition (pp. 477–500). Elsevier. https://doi.org/10.1016/B978-0-08-100722-8.00019-X

Cho, S. W., Gällstedt, M., Johansson, E., & Hedenqvist, M. S. (2011). Injection-molded nanocomposites and materials based on wheat gluten. International Journal of Biological Macromolecules, 48(1), 146–152. https://doi.org/10.1016/j.ijbiomac.2010.10.012

Coronado, J., M. F., Alexandre, E. M. C., Caicedo Flaker, C. H., et al. (2015). Biodegradable films based on gelatin and montmorillonite produced by spreading. International Journal of Polymer Science. https://doi.org/10.1155/2015/806791

Debeaufort, F., & Voilley, A. (2009). Lipid-Based Edible Films and Coatings. In Edible Films and Coatings for Food Applications (pp. 135–168). https://doi.org/10.1007/978-0-387-92824-1_5

Delcour, J. A., & Hoseney, R. C. (n.d.). Principles of Cereal Science and Technology Third Edition.

Dhanapal, A., Rajamani, L., & Banu, Ms. (2012). Edible films from Polysaccharides. Food Science and Quality Management. www.iiste.org

Domard, A., & Domard, M. (2002). Chitosan: Structure-Properties Relationship and Biomedical Applications.

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. In Materials Science and Engineering C, 33(4), 1819-1841. https://doi.org/10.1016/j.msec.2013.01.010

Environment. (2021). https://environment.co/food-packaging-waste-statistics-understanding-the-rise-of-food-packaging-waste/

Erkmen, O., & Barazi, A. O. (2018). General Characteristics of Edible Films. In Review Article Journal of Food Biotechnology Research. http://www.imedpub.com/journal-food-biotechnology-research/

Fajardo, P., Martins, J. T., Fuciños, C., Pastrana, L., Teixeira, J. A., & Vicente, A. A. (2010). Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering, 101(4), 349–356. https://doi.org/10.1016/j.jfoodeng.2010.06.029

Fakhreddin-Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chemistry, 136(34), 1490-1495. https://doi.org/10.1016/j.foodchem.2012.09.081

Galus, S., and Kadzińska, J. (2015). Food applications of emulsion-based edible films and coatings. In Trends in Food Science and Technology, 45(2), 273-283). https://doi.org/10.1016/j.tifs.2015.07.011

Galus, S., Kibar, E. A. A., Gniewosz, M., & Kraśniewska, K. (2020). Novel materials in the preparation of edible films and coatings-A review. Coatings, 10(7). https://doi.org/10.3390/coatings10070674

Huntrakul, K., Yoksan, R., Sane, A., & Harnkarnsujarit, N. (2020). Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 24. https://doi.org/10.1016/j.fpsl.2020.100480

Ili-Balqis, A. M., Nor Khaizura, M. A. R., Russly, A. R., & Nur Hanani, Z. A. (2017). Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. International Journal of Biological Macromolecules, 103, 721-732. https://doi.org/10.1016/j.ijbiomac.2017.05.105

Janjarasskul, T., & Krochta, J. M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1(1), 415–448. https://doi.org/10.1146/annurev.food.080708.100836

Jolie, R. P., Duvetter, T., Van Loey, A. M., & Hendrickx, M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: A review. In Carbohydrate Research, 345(18), 2583-2595. https://doi.org/10.1016/j.carres.2010.10.002

Kaidi, S., Bentiss, F., Jama, C., Khaya, K., Belattmania, Z., et al. (2022). Isolation and Structural Characterization of Alginates from the Kelp Species Laminaria ochroleuca and Saccorhiza polyschides from the Atlantic Coast of Morocco. Colloids and Interfaces, 6(4). https://doi.org/10.3390/colloids6040051

Khaket, T. P., Dhanda, S., Jodha, D., & Singh, J. (2015). Purification and biochemical characterization of dipeptidyl peptidase-II (DPP7) homologue from germinated Vigna radiata seeds. Bioorganic Chemistry, 63, 132-141. https://doi.org/10.1016/j.bioorg.2015.10.004

Khandelwal, M., & Windle, A. H. (2013). Hierarchical Organisation in the Most Abundant Biopolymer-Cellulose. In Mater. Res. Soc. Symp. Proc, 1504.

Kibria, M. G., Masuk, N. I., Safayet, R., Nguyen, H. Q., & Mourshed, M. (2023). Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. In International Journal of Environmental Research, 17(1). https://doi.org/10.1007/s41742-023-00507-z

Kirwan, M. J., Plant, S., & Strawbridge, J. W. (2011). Plastics in Food Packaging.

Kumar-Gupta, P., Sai Raghunath, S., Venkatesh Prasanna, D., et al. (2019). An Update on Overview of Cellulose, Its Structure and Applications. Cellulose. IntechOpen. https://doi.org/10.5772/intechopen.84727

Kumar, L., Ramakanth, D., Akhila, K., & Gaikwad, K. K. (2022). Edible films and coatings for food packaging applications: a review. In Environmental Chemistry Letters, 20(1), 875-900. https://doi.org/10.1007/s10311-021-01339-z

Lagarón, J. M., López-Rubio, A., & José Fabra, M. (2016). Bio-based packaging. Journal of Applied Polymer Science, 133(2). https://doi.org/10.1002/app.42971

Layuk, P., Sondakh, J., & Pesireron, M. (2019). Characteristics and Permeability Properties of Sago Starch Edible Film. AGRITEKNO: Jurnal Teknologi Pertanian, 8(2), 34–41. https://doi.org/10.30598/jagritekno.2019.8.2.34

Linus, O., U., and Mditshwa, A. (2013). A review on the role of packaging in securing food system: Adding value to food products and reducing losses and waste. African Journal of Agricultural Research, 8(22), 2621-2630. https://doi.org/10.5897/AJAR2013.6931

Market Research Future (2023). Retrieved from https://www.globenewswire.com/en/news-release/2023/07/04/2699032/0/en/Edible-Films-and-Coatings-Market-is-Expected-to-Reach-USD-4-4-Billion-By-2032-with-a-CAGR-of-8-50-Report-by-Market-Research-Future-MRFR.html

Mehandzhiyski, A. Y., & Zozoulenko, I. (2021). A Review of Cellulose Coarse-Grained Models and Their Applications. Polysaccharides, 2(2), 257–270. https://doi.org/10.3390/polysaccharides2020018

Mishra, R. K., Banthia, A. K., & Majeed, A. B. A. (2012). Pectin based formulations for biomedical applications: A review. Asian Journal of Pharmaceutical and Clinical Research, 5(4), 1-7. https://doi.org/http://dx.doi.org/10.1002/9781118301234.ch1

Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, Protein and Lipid-Based Natural Edible Films in Food Packaging: A Review. In Carbohydrate Polymers, 238. https://doi.org/10.1016/j.carbpol.2020.116178

Mojumdar, S. C., Moresoli, C., Simon, L. C., & Legge, R. L. (2011). Edible wheat gluten (WG) protein films: Preparation, thermal, mechanical, and spectral properties. Journal of Thermal Analysis and Calorimetry, 104(3), 929-936. https://doi.org/10.1007/s10973-011-1491-z

Nakano, T., Ueki, M., Mizoguchi, R., Takeshita, M., Arima, Y., & Aoki, T. (2017). Effects of heating and salts on aggregation and solubility of casein under acidic conditions. Milk Science, 66(2), 117–123. https://doi.org/10.11465/milk.66.ll 7

Naseri, H. R., Beigmohammadi, F., Mohammadi, R., & Sadeghi, E. (2020). Production and characterization of edible film based on gelatin–chitosan containing Ferulago angulate essential oil and its application in the prolongation of the shelf life of turkey meat. Journal of Food Processing and Preservation, 44(8). https://doi.org/10.1111/jfpp.14558

Necas, J., & Bartosikova, L. (2013). Carrageenan: a review. Veterinarni Medicina, 58(4), 187–205.

OECD. (2022). https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm

Pardede, A., Ratnawati, D., & Martono, A. (2013). Ekstraksi dan karakterisasi pektin dari kulit kemiri (Alleurites mollucana Willd). Media Sains, 5(1), 1-6.

Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods, 12(12), 2422. https://doi.org/10.3390/foods12122422

Radhakrishnan, N., Kanagesan, S., Pandurangan, A., & Padmanabhan, P. (2016). Basics to different imaging techniques, different nanobiomaterials for image enhancement. In Nanobiomaterials in Medical Imaging: Applications of Nanobiomaterials (pp. 101–129). https://doi.org/10.1016/B978-0-323-41736-5.00004-2

Rafiquzzaman, S. M., Ahmed, R., Lee, J. M., et al. (2016). Improved methods for isolation of carrageenan from Hypnea musciformis and its antioxidant activity. Journal of Applied Phycology, 28(2), 1265–1274. https://doi.org/10.1007/s10811-015-0605-6

Rehman, W. U., Majeed, A., Mehra, R., et al. (2016). Gelatin: A comprehensive report covering its indispensable aspects Philosophy View project DNA Barcoding of freshwater algae View project: Vol. I. https://www.researchgate.net/publication/308694247

Reportlinker. (2022). https://www.globenewswire.com/news-release/2022/07/01/2472976/0/en/The-Global-Edible-Films-And-Coating-Market-size-is-expected-to-reach-4-2-billion-by-2028-rising-at-a-market-growth-of-7-5-CAGR-during-the-forecast-period.html

Resianingrum, R., Atmaka, W., Khasanah, L. U., Kawiji, K., Utami, R., & Praseptiangga, D. (2016). Characterization of cassava starch-based edible film enriched with lemongrass oil (Cymbopogon citratus). Nusantara Bioscience, 8(2), 278–282. https://doi.org/10.13057/nusbiosci/n080223

Rhim, J. W., Gennadios, A., Handa, A., Weller, C. L., & Hanna, M. A. (2000). Solubility, tensile, and color properties of modified soy protein isolate films. Journal of Agricultural and Food Chemistry, 48(10), 4937–4941. https://doi.org/10.1021/jf0005418

Rhim, J. W., & Shellhammer, T. H. (2005). Lipid-based edible films and coatings. In Innovations in Food Packaging: Overiew. https://doi.org/10.1016/B978-0-12-311632-1.50053-X

Sandhu, K. S., Sharma, L., Kaur, M., & Kaur, R. (2020). Physical, structural, and thermal properties of composite edible films prepared from pearl millet starch and carrageenan gum: Process optimization using response surface methodology. International Journal of Biological Macromolecules, 143, 704–713. https://doi.org/10.1016/j.ijbiomac.2019.09.111

Seung, Y. C., & Rhee, C. (2004). Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT, 37(8), 833–839. https://doi.org/10.1016/j.lwt.2004.03.009

Shenoy, M., Abdul, N. S., Qamar, Z., Bahri, B. M. Al, Al Ghalayini, K. Z. K., & Kakti, A. (2022). Collagen Structure, Synthesis, and Its Applications: A Systematic Review. Cureus. https://doi.org/10.7759/cureus.24856

Shit, S. C., & Shah, P. M. (2014). Edible Polymers: Challenges and Opportunities. Journal of Polymers, 1-13. https://doi.org/10.1155/2014/427259

Shukla, R., & Cheryan, M. (2001). Zein: the industrial protein from corn. In Industrial Crops and Products, 13. www.elsevier.com/locate/indcrop

Soliman, E. A., Tawfik, M. S., El-Sayed, H., & Moharram, Y. G. (2007). Preparation and characterization of soy protein based edible/biodegradable films. American Journal of Food Technology, 2(6), 462–476. https://doi.org/10.3923/ajft.2007.462.476

Stephen, A. M., Phillips, G. O., & Williams, P. A. (2006). Food Polysaccharides and Their Applications, Second Edition.

Suhag, R., Kumar, N., Petkoska, A. T., & Upadhyay, A. (2020). Film formation and deposition methods of edible coating on food products: A review. In Food Research International, 136. https://doi.org/10.1016/j.foodres.2020.109582

Sun, H., Shao, X., Jiang, R., Shen, Z., & Ma, Z. (2018). Mechanical and barrier properties of corn distarch phosphate-zein bilayer films by thermocompression. International Journal of Biological Macromolecules, 118, 2076-2081. https://doi.org/10.1016/j.ijbiomac.2018.07.069

Torres, M. D., Chenlo, F., & Moreira, R. (2017). Thermal reversibility of kappa/iota-hybrid carrageenan gels extracted from Mastocarpus stellatus at different ionic strengths. Journal of the Taiwan Institute of Chemical Engineers, 71, 414–420. https://doi.org/10.1016/j.jtice.2016.11.028

V, A. K., Hasan, M., Mangaraj, S., M, P., Verma, D. K., & Srivastav, P. P. (2022). Trends in Edible Packaging Films and its Prospective Future in Food: A Review. In Applied Food Research, 2(1). https://doi.org/10.1016/j.afres.2022.100118

Wang, H., Qian, J., & Ding, F. (2018). Emerging Chitosan-Based Films for Food Packaging Applications. Journal of Agricultural and Food Chemistry. 66(2), 395-413). https://doi.org/10.1021/acs.jafc.7b04528

Wittaya, T. (2012). Protein-Based Edible Films: Characteristics and Improvement of Properties. In Structure and Function of Food Engineering. InTech. https://doi.org/10.5772/48167

Wittaya, T. (2013). Influence of Type and Concentration of Plasticizers on the Properties of Edible Film from Mung Bean Proteins. In Kmitl Science and Technology Journal, 13(1).

Xu, J., & Li, Y. (2023). Wheat gluten–based coatings and films: Preparation, properties, and applications. In Journal of Food Science, 88(2), 582-594). https://doi.org/10.1111/1750-3841.16454

Zhang, X., Burgar, I., Do, M. D., & Lourbakos, E. (2005). Intermolecular interactions and phase structures of plasticized wheat proteins materials. Biomacromolecules, 6(3), 1661-1671. https://doi.org/10.1021/bm049213x

Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., & Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 169, 101-107.

Zhang, Y., Rempel, C., & Mclaren, D. (2013). Edible Coating and Film Materials: Carbohydrates. In Innovations in Food Packaging: Second Edition, 305-323.




DOI: http://dx.doi.org/10.31602/jst.v9i3.12639

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Hakimah Nurjanah, Hilman Imadul Umam, Teguh Pambudi

E-ISSN  2477- 4731

Al Ulum: Jurnal Sains dan teknologi = Al Ulum: Jurnal Science and Technology by Islamic University of Kalimantan is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at http://ojs.uniska-bjm.ac.id/index.php/JST.