Dinamika Populasi Mikroba dan Reduksi Serat Kasar pada Dekomposisi Awal Pengomposan Limbah Sapi Potong

Eulis Tanti Marlina(1*), Deden Zamzam Badruzzaman(2), Ellin Harlia(3), Hidayati Hidayati(4), Iin Susilawati(5)

(1) Laboratorium Mikrobiologi dan Penanganan Limbah, Departemen Teknologi Hasil Peternakan, Fakultas Peternakan, Universitas Padjadjaran
(2) Laboratorium Mikrobiologi dan Penanganan Limbah, Departemen Teknologi Hasil Peternakan, Fakultas Peternakan, Universitas Padjadjaran
(3) Laboratorium Mikrobiologi dan Penanganan Limbah, Departemen Teknologi Hasil Peternakan, Fakultas Peternakan, Universitas Padjadjaran
(4) Laboratorium Mikrobiologi dan Penanganan Limbah, Departemen Teknologi Hasil Peternakan, Fakultas Peternakan, Universitas Padjadjaran
(5) Fakultas Peternakan, Universitas Padjadjaran
(*) Corresponding Author

Sari


Dekomposisi awal memiliki peran penting dalam proses pengomposan.   Penelitian ini bertujuan untuk menentukan dinamika populasi mikroba dan degradasi serat kasar selama proses dekomposisi awal. Limbah ternak pada umumnya memiliki rasio karbon dan nitrogen yang rendah sehingga diperlukan penambahan jerami padi sebagai sumber karbon. Penelitian ini menggunakan tiga perlakuan rasio C/N: 20, 25, dan 30. Perubahan suhu, pH, jumlah total bakteri, jumlah actinomycetes, jumlah kapang diamati selama 7 hari proses dekomposisi awal.  Kadar lignin, selulosa, dan hemiselulosa diamati pada akhir dekomposisi awal. Hasil penelitian menunjukkan bahwa rasio C/N 30 menghasilkan proses dekomposisi tertinggi, dengan fase termofilik terjadi pada hari ke 2 dengan suhu tertinggi 57oC dan pH 8,79. Temperatur mencerminkan proses dekomposisi yang tinggi melalui aktivitas mikroba dalam mendekomposisi bahan organik. Total jumlah bakteri dan actinomycetes yang dicapai pada fase termofilik berturut-turut 179 x 1011 cfu/g dan 87 x 105 cfu/g. Kapang berkembang pada suhu mesofilik pada hari ke 5 dan volume total tertinggi mencapai 48 x 1011 cfu/g pada hari ke 6. Proses dekomposisi awal mampu mereduksi lignin sebesar 30,57%. Hasil penelitian menunjukkan bahwa dinamika populasi mikroba dipengaruhi oleh ketersediaan nutrisi dalam substrat yang dijelaskan oleh rasio C/N. Pertumbuhan bakteri dan aktinomycetes tertinggi terjadi pada suhu termofilik sementara kapang berkembang pada suhu mesofilik. Kandungan lignin dan hemiselulosa pada substrat menurun.


Kata Kunci


Limbah sapi potong; Degradasi serat kasar; dekomposis awal, Dinamika mikroba

Teks Lengkap:

PDF

Referensi


Aziz, S.Q., I.A. Omar., J.S. Mustafa. (2018). Design and Study for Composting Process Site. International Journal of Engineering Inventions. Vol. 7, Issue 9:09-18.

Chatterjee, N., M. Flury, C. Hinman, C.G. Cogger. Chemical and Physical Characteristics of Compost Leachates. Washington State University, 2606 W Pioneer, Puyallup, WA, 98371.

Chen, L., M. De Haro Marti, A. Moore, C. Falen. (2011). The Composting Process. Dairy Compost Production and Use in Idaho. University of Idaho.

Erickson M.C, J. Liao, L. Ma, X. Jiang, M.P Doyle . (2009). Inactivation of Salmonella spp. In crow manure composts formulated to different initial C:N ratios. Biores Technol 100:5898–5903

Fourti O, N Jedidi, A. Hassen. (2011). Comparison of methods for evaluating stability and maturity of co-composting of municipal solid wastes and sewage sludge in semi-arid pedo-climatic condition. Nat Sci 3:124–135

Hidayati, Y.A., E.T. Marlina, Tb.B. A. Kurnani. (2015). Decrease the number of bacteria and fungi on beef cattle waste through decomposition early treatment in integrated. Proceeding on Semnas Peternakan berkelanjutan, Universitas Soedirman.

Huang X.F., N. Santhanam, D.V. Badri. (2013). Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616-26.

Janusz, G., A. Pawlik, J. Sulej, U. Swiderska-Burek, A.Jarosz-Wilkolazka, A. Paszczynski. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbial Rev. 41(6): 941-962.

Kumar, S. (2011). Composting of municipal solid waste. Critical reviews in biotechnology, 31,112-136

Li, L., M. Xu, M.E. Ali, W. Zhang, Y. Duan, D. Li. (2018). Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS One 13(9):1-18.

Madadi, M and A. Abbas. (2017). Lignin degradation by fungal pretreatment: A review. J. Plant Pathol Microbiol 2017, 8 (2) : 1-6.

Marlina, E.T., Tb. B. A. Kurnani, Y.A. Hidayati. (2016). Detection of Pathogenic Bacteria and Heavy Metal on Liquid organic fertilizer from dairy cattle waste. Proceeding of International Seminar on Livestock Production and Veterinary Technology, Denpasar Bali 10-12, 2016.

Moxley E., E. Puerta-Fernadez, E.J. Gomez, J. M. Gonzalez. (2019). Influence of abiotic factors temperature and water content on bacterial 2-chlorophenol biodegradation in soils. Frontiers in Environmental Sci. 7(41) : 1-5.

Neugebauer, M. P. Solowiej, J. Piechocki, W. Czekala, D. Janczak. (2017). The influence of the C:N ratio on the composting rate. International Journal of Smart Grid and Clean Energy. 6 (1): 54-60.

Pan, l., B. Dam., S.K.Sen. (2012). Composting of common organicwastesusing microbial inoculants. 3Biotech. Doi: 10.1007/s13205-011-0033-5.

Priyanga, U and M. Kannahi. (2018). Lignin degradation: A Review. International Journal of Trend in Scientific Research and Development, 2 (3):2374-2396.

Richard, T and N, Trautmann. (1996). C/N Ratio. Cornell Composting, Science and Engineering. Cornell University, Ithaca NY.

Ruiz-Duenas, F and A.T. Martinez. (2009). Microbial degradation of lignin: how a bulky recalcitrant polymer is efficienctly recycled in nature and how we can take advantage of this. Microb. Biotechnol. 2(2):164-177.

Sihag S., H. Pathak, D.P. Jaroli. (2014). Factors affecting the rate of biodegradation of polyaromatic hydrocarbon. Int. J. Pure App. Biosci. 2 (3): 185-202.

Sharma, M., P. Dangi, and M. Choudhary. (2014). Actinomycetes: Source, Identification, and Their Applications. International Journal of Current Microbiology and Applied Sci. Vol. 3. Number 2, pp. 801-832.

Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker. (2010). Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure. National Renewable Energy Laboratory, The US. Departement of Energy Office of Energy Efficiency & Renewable Energy.

Villar, I., D. Alves, J. Garrido, S. Mato. (2016). Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Management. Vol. 54, p. 83-92.

Worrell, W.A. and Vesilind, P.A. (2012). Solid Waste Engineering. Second edition, Publisher, Global Engineering: Christopher M. Shortt.

Zeng G, Yu Z, Chen Y, Zhang J, Li H, Yu M, Zhao M. (2011). Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Biores Technol. 2011;102:5905–5911. doi: 10.1016/j.biortech.2011.02.088.




DOI: http://dx.doi.org/10.31602/zmip.v45i1.2657

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

 

    

 

 

This work is licensed under a Creative Commons Attribution 4.0 International License.