PENGARUH BEBAN LALU LINTAS TERHADAP KERUSAKAN PERKERASAN JALAN (STUDI KASUS SEGMEN JALAN BANJARBARU - BATI-BATI)

¹Jihan Alya Nabillah ²Iphan F. Radam

¹Mahasiswa Program Studi Teknik Sipil, Fakultas Teknik, ULM E-mail: jihanalyanabillah2@gmail.com

²Dosen Program Studi Teknik Sipil, Fakultas Teknik, ULM E-mail: ifradam@ulm.ac.id/Hp.+628195143653

ABSTRAK

Peningkatan volume kendaraan merupakan salah satu penyebab terjadinya kerusakan jalan. Dengan jumlah kendaraan yang semakin bertambah dimungkinkan jalan akan mengalami kerusakan dalam waktu yang relatif singkat. Tujuan dari penelitian ini adalah mengetahui pengaruh volume kendaraan dalam smp/jam dengan tingkat kerusakan jalan dan hubungan beban lalu lintas dengan tingkat kerusakan jalan. Metode yang digunakan dalam penelitian ini adalah metode analisis regresi. Penelitian ini dilakukan di ruas Jl. H.Mistar Cokrokusumo Banjarbaru sampai Jl. A.Yani Km.34 kecamatan Bati-Bati. Dari hasil analisis didapat hubungan antara volume kendaraan dalam smp/jam dengan nilai kerusakan jalan, dimana hubungan terkuat adalah antara kendaraan berat (HV) dan nilai kerusakan jalan dengan nilai r sebesar 0,9822 dengan *Pvalue* sebesar 0,011099. Sedangkan hubungan antara beban lalu lintas dan nilai kerusakan jalan didapat hasil r sebesar 0,9528.

Kata Kunci: Beban Lalu Lintas, Nilai Kerusakan Jalan dan Regresi

ABSTRACT

The increase in the volume of vehicles is one of the causes of damage to the road. With the growing number of vehicles, the possible way would be damaged in a relatively short time. The purpose of this research is to determine the effect of vehicle volume in pcu/hour with the level of road damage and the relationship of traffic loads to the level of road damage. The method used in this research is regression analysis. The research was carried out in the H. Mistar Cokrokusumo Street Banjarbaru to A. Yani Street Km.34 Bati-bati. From the analysis result obtained a correlation between the volume of vehicles in pcu/hour and the value of damage to the road, where the strongest correlation is between heavy vehicles (HV) and the value of road damage with the rvalue of 0.9822 with p-value of 0.011099. While the correlation between traffic loads and the value of road damage obtained r results of 0.9528.

Keywords: Traffic Load, Value Damage Roads and Regression

PENDAHULUAN

Pertumbuhan jumlah penduduk, ditambah dengan perkembangan kebutuhan transportasi, akan berakibat pada peningkatan volume kendaraan baik roda dua, empat, atau selebihnya. Hal ini juga terjadi di Kota Banjarbaru, dimana dapat kita lihat pada ruas-ruas jalan di Kota Banjarbaru yang semakin padat. Salah satu dampak peningkatan volume kendaraan terjadi pada Jalan H. Mistar Cokrokusumo sampai Jalan A. Yani Km 34 (Simpang Tiga Nusa Indah, Bati-bati), yang merupakan jalan penghubung Banjarbaru - Bati-bati. Dampak peningkatan ini mengakibatkan banyak terjadi kerusakan pada ruas jalan diatas. Hal ini terutama diakibatkan karena jalan ini merupakan daerah kuari, sehingga banyak aktifitas dari kendaraan berat yang lewat untuk mengangkut material. Dampak dari aktifitas ini mengakibatkan kemungkinan beban yang diterima jalan melebihi beban rencana (overloading).

Beranjak dari permasalahan diatas, maka perlu dilakukan penelitian untuk mendapatkan sejauh mana pengaruh besar-kecilnya arus lalu lintas terhadap tingkat kerusakan jalan, baik dalam satuan volume lalu lintas maupun beban kendaraan.

TINJAUAN PUSTAKA

Jalan

Berdasarkan Undang-Undang RI No. 38 tahun 2004 mengenai jalan, maka jalan dapat diklasifikasikan menjadi 5 (lima), yaitu berdasarkan peruntukannya, sistem jaringan jalan, fungsi, status, dan kelasnya. Setiap jalan harus memperhatikan semua elemen penampang jalan. Menurut Saodang (2004), elemen penampang jalan terdiri dari: Jalur lalu lintas, lajur, bahu jalan, lereng/talud, pulau lalu lintas, dan kanal jalan. Ditinjau dari perkerasan jalan dapat dibedakan menjadi perkerasan lentur, kaku, dan perkerasan komposit (Sukirman, 1992).

Kendaraan sebagai arus lalu lintas yang membebani jalan berdasarkan MKJI 1997 dibagi menjadi 4 (empat), yaitu:

- a. Kendaraan Ringan (LV) terdiri dari mobil penumpang, oplet, mikrobis, pick-up, dan truk kecil).
- b. Kendaraan Berat (HV) terdiri dari bis, truk 2 as, truk 3 as, dan truk kombinasi.
- c. Sepeda Motor (MC terdiri dari sepeda motor dan kendaraan roda 3.
- d. Kendaraan Tak Bermotor (UM) seperti sepeda, becak, kereta kuda, dan kereta dorong.

Kerusakan Jalan

Menurut Shahin (1994), ada beberapa tipe kerusakan pada perkerasan jalan seperti retak kulit buaya, keriting, amblas, cacat tepi perkerasan, retak refleksi sambungan, penurunan bahu pada jalan, retak memanjang dan melintang, tambalan, lubang, alur, tersungkur, keluar aspal dari permukaan jalan, retak blok, dan retak menggeser. Untuk menjaga kualitas jalan tersebut maka perlu pemelihaan. Berdasarkan PMPU No. 13

Tahun 2011 jenis pemeliharaan jalan dapat berupa pemeliharaan rutin, pemeliharaan berkala, rehabilitasi, dan rekonsturksi. Pemeliharaan jalan tersebut tergantung penilaian dari kerusakan jalan yang terjadi. Penilaian terhadap setiap jenis kerusakan berdasarkan Tata Cara Penyusunan Program Pemeliharaan Jalan Kota No.018/T/BNKT/1990 seperti terlihat pada Tabel 1.

Tabel 1 Tabel Nilai Kondisi Jalan Berdasarkan Jenis Kerusakan Tata Cara Penyusunan Program Pemeliharaan Jalan Kota

	Pemeliharaan Jalan Kota
Retak-retak	
Tipe	Angka
Buaya	5
Acak	4
Melintang	3
Memanjang	1
Tipe	Angka
Tidak Ada	1
>2 mm	3 2
1 - 2 mm <1 mm	1
Tidak Ada	0
Luas Kerusakan	Angka
>30%	Angka 3
10 - 30%	2
<10%	1
Tidak Ada	0
Al	
Kedalaman	Angka
>20 mm	$\ddot{7}$
11 - 20 mm	5
6-10 mm	3
0-5 mm	1
Tidak Ada	0
	lan Lubang
Luas	Angka
>30%	3
20 – 30%	2
Luas	Angka
10 – 20% <10%	$\frac{1}{0}$
Kekasaran	
Jenis	Angka
Disintegration	4
Pelepasan Butir	3
Rough	2
Fatty	1
Close Texture	0
Ami	
Kedalaman	Angka
>5/100 m	4
2 - 5/10 m 0 - 2/100 m	2
Tidak Ada	0
1 IUUN AUU	U

Metode Regresi

Metode regresi dibedakan oleh dua jenis variabel yaitu variabel bebas yang disebut juga variabel X dan variabel tak bebas yang disebut juga variabel Y (Radam, 2010). Indikator penilaiaan dari hasil analisis ini biasanya menggunakan nilai r dan *Pvalue*. Menurut Mona,dkk. (2015) uji signifikansi apabila nilai (*Pvalue*) < 0,05 artinya variabel bebas mempengaruhi variabel terikat, tapi apabila nilai (*Pvalue*) > 0,05 maka variabel bebas tidak mempengaruhi variabel terikat. Menurut Radam dkk. (2015), interpretasi nilai r terhadap kuatnya hubungan korelasi dilihat pada Tabel 2.

Tabel 2. Interpretasi Nilai R Berdasarkan Koefisien Korelasi

R ² Value	Nilai absolut koefisien korelasi (r)	Interpretasi
< 0.04	0.00 - 0.199	Korelasi sedikit; hubungan yang nyaris diabaikan
0.04	0.20 - 0.399	Korelasi rendah; hubungan pasti tapi kecil
0.16	0.40 - 0.699	Korelasi sedang; hubungan substansial
0.49	0.70 - 0.899	Korelasi kuat; hubungan yang ditandai
0.81	0.90 - 1.000	Korelasi yang sangat kuat; hubungan yang sangat bisa diandalkan

METODOLOGI PENELITIAN

Dalam penelitian ini tingkat kerusakan jalan dianalisis sebagai akibat dari arus lalu lintas. Arus lalu lintas yang dihubungkan dengan kerusakan jalan ini adalah volume lalu lintas dalam smp/jam, jumlah kendaraan setiap tipe, dan beban total kendaraan.

Lokasi yang dijadikan obyek penelitian adalah sebanyak 6 (enam) segmen jalan pada Jalan H. Mistar Cokrokusumo sampai dengan Jalan A.Yani Km 34 (Simpang Tiga Nusa Indah, Bati-bati). Penentuan segmen jalan tersebut berdasarkan kondisi jalan yang sama yaitu mempunyai klasifikasi jalan, umur, dan waktu pemeliharaan jalan terakhir yang tidak berbeda. Data primer yang digunakan adalah data kerusakan jalan dan volume lalu lintas pada jam puncak.

HASIL DAN PEMBAHASAN

Data Volume Lalu Lintas

Data volume lalu lintas pada keenam segmen yang ditinjau pada jam puncak seperti terlihat pada Tabel 3.

Tabel 3. Volume Lalu Lintas (Dua Arah)

Jenis Kendaraan	Seg. 1	Seg. 2	Seg. 3	Seg. 4	Seg. 5	Seg. 6
Kendaraan Roda Tiga	0	26	0	12	24	7
Sedan	14264	11085	6277	4358	2695	4680

Jenis Kendaraan	Seg. 1	Seg. 2	Seg. 3	Seg. 4	Seg. 5	Seg. 6
Oplet	1933	649	655	562	1022	651
Micro Bus	132	54	0	0	0	10
Bus	48	34	5	30	0	38
Pick up	1202	1624	734	767	873	2377
Micro Truck Kosong	31	53	31	22	53	119
Micro Truck Berisi	41	128	26	12	84	644
Truck As 2 Kosong	1593	2169	1040	820	687	1646
Truck As 2 Berisi	1640	1636	415	673	592	1539
Truck As 3 Kosong	53	104	52	0	0	70
Truck As 3 Berisi	655	428	227	0	0	304
Semi Trailer Kosong	0	53	0	0	0	54
Semi Trailer Berisi	41	105	0	0	0	222
Sepeda Motor	39495	42776	27897	20069	25626	21555
Sepeda	117	119	0	35	238	188
Becak	100	84	25	77	50	0
TOTAL	61251	61127	37181	27437	31944	34042

Selanjutnya untuk mendapatkan volume lalu lintas dalam satuan smp/jam, setiap jenis kendaraan (kendaraan/jam) dikalikan dengan ekivalen mobil penumpang (emp) Nilai emp yang digunakan adalan emp berdasarkan MKJI 1997.

Untuk beban lalu lintas yang bekerja pada ruas jalan, volume lalu lintas dikonversi ke beban standar (ESA) dengan menggunakan Faktor Ekivalen Beban (*Vehicle Damage Factor*). Nilai VDF berdasarkan MDP 2017 seperti terlihat pada Tabel 4.

Tabel 4. Nilai VDF Masing-masing Kendaraan Niaga (MDP,2017)

		Suma	atera			Ja	wa			Kalim	antan			Sula				li, Nusa aluku d	Tengga	
Jenis kenderaan	Bel akt	ban tual	Nor	mal	Bel akt		Nor	mal		ban tual	Nor	mal		oan ual	Nor	mal	Bel akt	oan ual	Nor	mal
	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5	VDF 4	VDF 5
5B	1.0	1,0	1,0	1,0	1,0	1,0	1.0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
6A	0.55	0.5	0.55	0.5	0.55	0.5	0.55	0.5	0.55	0.5	0.55	0.5	0.55	0.5	0.55	0.5	0.55	0.5	0.55	0.5
6B	4,5	7,4	3,4	4,6	5,3	9,2	4,0	5,1	4,8	8,5	3,4	4,7	4,9	9,0	2,9	4,0	3,0	4,0	2,5	3,0
7A1	10 1	18 4	5,4	7,4	8,2	14,4	4,7	6,4	9,9	18.3	4,1	5,3	7,2	11,4	4,9	6,7	-	-	-	-
7A2	10,5	20,0	4,3	5,6	10,2	19,0	4,3	5,6	9,6	17,7	4,2	5,4	9,4	19,1	3,8	4,8	4,9	9,7	3,9	6,0
7B1	-		1	-	11,8	18,2	9,4	13,0	-	-	-	-	-	1	•	1	-	1	-	1
7B2	-	-	-	-	13,7	21,8	12,6	17,8	-	-	-	-	-	1	1	1	-	1	-	1
7C1	15,9	29,5	7.0	9,6	11,0	19,8	7,4	9,7	11,7	20,4	7,0	10,2	13,2	25,5	6,5	8,8	14,0	11,9	10,2	8,0
7C2A	19,8	39,0	6,1	8,1	17,7	33,0	7,6	10,2	8,2	14,7	4,0	5,2	20,2	42,0	6,6	8,5	-	-	-	-
7C2B	20,7	42,8	6,1	8,0	13,4	24,2	6,5	8,5	-	-	-	-	17,0	28,8	9,3	13,5	-	1	-	1
7C3	24,5	51,7	6,4	8,0	18,1	34,4	6,1	7,7	13,5	22,9	9,8	15,0	28,7	59,6	6,9	8,8	-	-	-	•

Nilai ESA untuk berbagai jenis kendaraan dapat dilihat pada Tabel 5.

Tabel 5. Nilai ESA Masing-masing Jenis Kendaraan (Dua Arah)

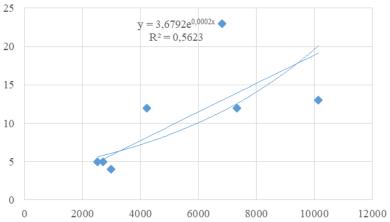
				$\boldsymbol{\mathcal{C}}$	\mathcal{C}		`	,	
Segmen	6A Kosong	6A Berisi	6B Kosong	6B Berisi	7A Kosong	7A Berisi	7C Kosong	7C Berisi	ESA
1	53	0	1593	1640	53	655	0	41	41300
2	53	66	2169	1636	104	428	53	105	45361
3	31	26	1040	415	52	227	0	0	17502
4	22	0	820	673	0	0	0	0	12702
5	53	53	687	592	0	0	0	0	10925
6	119	396	1646	1539	70	304	54	222	39805

Data Kerusakan Jalan

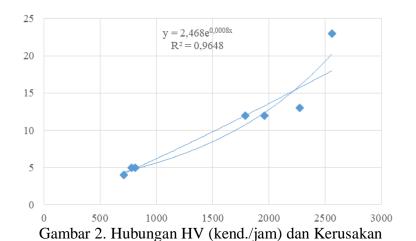
Nilai kerusakan jalan setiap segmen baik arah masuk kota maupun keluar kota seperti terlihat pada Tabel 6.

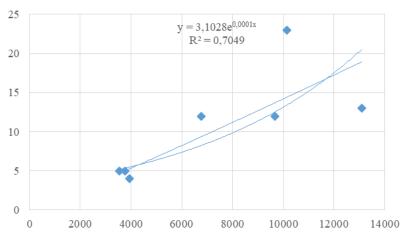
Tabel 6. Nilai Kerusakan Jalan

	1 400 01 01 1 1141 1101 45411					
Coamon	Skor Kerusakan					
Segmen	Arah masuk kota	Arah keluar kota				
1	13	12				
2	23	-				
3	-	-				
4	5	4				
5	-	5				
6	-	12				


Hubungan kerusakan jalan dengan volume lalu lintas (smp/jam)

Analisis untuk mendapatkan hubungan kedua variabel yang ditinjau berdasarkan data kerusakan jalan pada kondisi jalan yang sama. Dari Tabel 6 didapat data yang memungkinkan untuk digunakan sebanyak 7 (tujuh). Berdasarkan kontribusi pembebanannya, volume lalu lintas sebagai variabel bebas (x) yang dianalisis adalah LV (kend./jam), HV (kend./jam), dan LHR (smp/jam). Rekapitulasi semua variabel yang ditinjau seperti terlihat pada Tabel 7.


Tabel 7. Rekapitulasi Nilai Variabel yangDitinjau


No.	Skor Kerusakan (Y)	LV (kend./jam)	HV (kend./jam)	LHR (Smp/jam)
1	13	10143	2276	13102
2	23	6820	2560	10148
3	5	2720	810	3773
4	12	7329	1793	9660
5	4	3003	713	3930
6	5	2522	782	3539
7	12	4222	1963	6774

Hubungan setiap variabel bebas terhadap tingkat kerusakan jalan (Y) adalah seperti terlihat pada pada Gambar 1, Gambar 2, dan Gambar 3.

Gambar 1. Hubungan LV (kend./jam) dan Kerusakan

Gambar 3. Hubungan Volume Kendaraan (smp/jam) dan Kerusakan

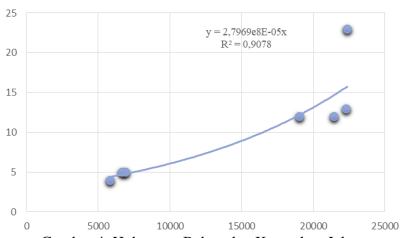
Dari Gambar 1, hubungan antara kendaraan ringan (LV) dan nilai kerusakan memiliki nilai R² sebesar 0,5623 atau nilai r yang didapat 0,7499, hal ini menjelaskan bahwa antara variabel X dan Y memiliki pengaruh yang kuat. Dari Gambar 2, hubungan antara kendaraan berat (HV) dan nilai kerusakan menunjukkan korelasi yang sangat kuat dengan nilai r sebesar 0,9822. Selanjutnya dari Gambar 3 hubungan antara volume lalu lintas (smp/jam) dengan nilai kerusakan memperlihatkan korelasi yang dengan nilai r sebesar 0,8396.

Berdasarkan nilai korelasi yang didapat diatas, tingkat kerusakan jalan cenderung lebih berkorelasi dengan besarnya volume kendaraan berat dibandingkan kendaraan ringan. Ditinjau terhadap nilai signifikansinya kendaraan berat lebih signifikan mempengaruhi dibandingkan dengan kendaraan ringan. Nilai *Pvalue* HV yang menunjukkan nilai yang < 0,05 seperti terlihat pada Tabel 8.

Tabel 8. Output Analisis Regresi Berganda

	1	<i>U</i>	0	
	Coefficients	Standard Error	t Stat	P-value
Intercept	-1,6299	2,2975	-0,7094	0,5172
LV	-0,0007	0,0006	-1,1890	0,3002
HV	0,0103	0,0023	4,4672	0,0111
Multiple R	0,95151176			
R Square	0,90537463			
Adjusted R Square	0,85806194			
Standard Error	2,52595602			
Observations	7			

Hubungan Kerusakan Jalan dengan Beban Lalu Lintas


Hubungan antara kerusakan jalan dan beban lalu lintas,dimana variabel X merupakan ESA, dan nilai kerusakan sebagai variabel Y. Rekapitulasi antara variabel x dan y dapat dilihat pada Tabel 9.

Tabel 9. Rekapitulasi antara variabel X dan Y

No.	Skor Kerusakan	ESA
1	13	22279
2	23	22364
3	5	6885
4	12	19041
5	4	5823
6	5	6674
7	12	21429

Hubungan antara variabel X (ESA) dan variabel Y (kerusakan) dianalisis menggunakan *scatter chart*, diperoleh hasil korelasi seperti pada Gambar 4.

Dari hasil hubungan pada Gambar 4, dapat dilihat nilai koefisien determinasi (R²) antara beban sumbu (ESA) dengan kerusakan jalan, sebesar 0,9078, sehingga diperoleh nilai korelasi (r) sebesar 0,9528 yang berarti antara variabel X dan Y menunjukkan pengaruh yang sangat kuat.

Gambar 4. Hubungan Beban dan Kerusakan Jalan

PENUTUP

Kesimpulan

Pada kondisi jalan yang sama yaitu pada jalan dengan klasifikasi, umur, dan penanganan pemeliharaan jalan terakhir tidak berbeda memperlihatkan bahwa tingkat kerudakan jalan sangat dipengaruhi oleh besar-kecilnya volume kendaraan berat yang lewat. Berdasarkan hasil analisis korelasi antara kendaraan berat (kend./jam) dan kerusakan jalan memperlihatkan hubungan yang sangat kuat (0,9822) dengan membentuk persamaan eksponensial y= 2,468.e^{0,0008x}. Kendaraan berat ini lebih signifikan mempengaruhi kerusakan jalan dibandingkan dengan jenis kendaraan yang lain, hal ini terlihat dari nilai *Pvalue* yang kurang dari 0,05.

Kerusakan jalan juga memperlihatkan korelasi yang sangat kuat bila dihubungkan dengan beban standar (ESA) dengan nilai r sebesar 0,9528. Bentuk persamaan antara beban lalu lintas dan kerusakan jalan adalah y= 2,7969.e^{0,00008x}. Dari kedua persamaan yang terbentuk, persamaan dengan menggunakan variabel bebas kendaraan berat lebih mudah digunakan karena cukup dalam satuan kendaraan perjam.

Ucapan Terimakasih

Penulis mengucapkan terimakasih kepada kawan-kawan Mahasiswa Program Studi Teknik Sipil, Fakultas Teknik, Universitas Lambung Mangkurat serta semua pihak yang telah banyak membantu kelancaran dan selesainya penelitian ini.

DAFTAR PUSTAKA

- Direktorat Jendral Bina Marga. (1990). *Tata Cara Penyusunan Program Pemeliharaan Jalan Kota Nomor 018/T/BNKT/1990*.
- Direktorat Jenderal Bina Marga. (1997), *Manual Kapasitas Jalan Indonesia (MKJI)* 1997, Direktorat Bina Jalan Kota (BINKOT).
- Kementrian Pekerjaan Umum. (2017). *Manual Desain Perkerasan Jalan Nomor* 04/SE?Db/2017.
- Kementrian Pekerjaan Umum. (2011). Peraturan Menteri Pekerjaan Umum Nomor 13/PRT/M/2011 Tentang Tata Cara Pemeliharaan dan Penilikan Jalan.
- Mona, M. G., Kekenusa, J. S., & Prang, J. D. (2015). Penggunaan Regresi Linear Berganda untuk Menganalisis Pendapatan Petani Kelapa Studi Kasus: Petani Kelapa Di Desa Beo, Kecamatan Beo Kabupaten Talaud. d'Cartesian: Jurnal Matematika dan Aplikasi, 4 (2), 196-203.
- Radam, I.F. (2010), Bahan Ajar: Rekayasa Lalu Lintas, Banjarmasin: Universitas Lambung Mangkurat Press.
- Radam, I. F., Mulyono, A. T., & Setiadji, B. H. (2015). Influence of Service Factors In The Model of Public Transport Mode: A Banjarmasin Banjarbaru Route Case Study. *International Journal for Traffic and Transport Engineering*, *5*(2),108-119.
- Republik Indonesia. (2004). *Undang-Undang Republik Indonesia Nomor 38 Tahun 2004 Tentang Jalan*.
- Saodang, H. (2004). Perancangan Perkerasan Jalan Raya. Bandung: Nova.
- Shahin, M. Y. (1994). *Pavement Management For Airports, Roads, and Parking Lots.*United States of America: Chapman and Hall.
- Sukirman, S. (1992). Perkerasan Lentur Jalan Raya. Bandung: Nova.