PREDIKSI PREMI ASURANSI KESEHATAN MENGGUNAKAN MACHINE LEARNING: PENDEKATAN ARTIFICIAL NEURAL NETWORK

Rifqi Fauzi(1), Annisa Cipta Nabila(2), Valentina Febri Krisnawati(3), Achmad Pratama Rifai(4*)

(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(4) Universitas Gadjah Mada
(*) Corresponding Author

Sari


Studi ini berfokus pada pengembangan model prediktif premi asuransi kesehatan dengan mengintegrasikan berbagai variabel, termasuk umur, jenis kelamin (sex), indeks massa tubuh (BMI), jumlah langkah harian (steps), jumlah anak (children), status perokok (smoker), wilayah geografis (region), dan klaim asuransi. Variabel-variabel tersebut diidentifikasi sebagai faktor-faktor kunci yang dapat mempengaruhi premi asuransi kesehatan. Pendekatan machine learning digunakan, khususnya model Artificial Neural Network (ANN), digunakan untuk memprediksi premi. Analisis perbandingan antara model ANN dan Multiple Linear Regression dilakukan untuk mengevaluasi keakuratan dan kinerja relatif keduanya. Prediksi yang dilakukan menggunakan metode ANN dan Multiple Linear Regression memberikan hasil yang cukup signifikan dimana secara berurutan nilai mean absolute error sebesar 1.242,59 dan 3.769,42, nilai mean squared error sebesar 15.713.857 dan 29.803.154. Hasil eksperimen menunjukkan bahwa model ANN memiliki kemampuan prediksi premi yang lebih baik dibandingkan dengan model Multiple Linear Regression, terutama dalam menangani pola kompleks dan interaksi non-linear antar variabel.

Kata Kunci:  Asuransi Kesehatan, Premi Asuransi, Prediction, ANN, Multiple Linear Regression


Teks Lengkap:

PDF 52-63

Referensi


Aggarwal, S., & Anmol. (2022). Health Insurance Amount Prediction Using Supervised Learning. Proceedings of International Conference on Technological Advancements in Computational Sciences, ICTACS 2022, 578–581. https://doi.org/10.1109/ICTACS56270.2022.9988256

Aizawa, N., & Ko, A. (2023). Dynamic Pricing Regulation and Welfare in Insurance Markets (No. w30952). National Bureau of Economic Research.

Albalawi, S., Alshahrani, L., Albalawi, N., & Alharbi, R. (2023). Prediction of healthcare insurance costs. Computers and Informatics, 3(1), 9-18.

Anggraini, N. A., Nurrohmah, S., & Sari, S. F. (2021). Premium calculation on health insurance implementing deductible. Journal of Physics: Conference Series, 1725(1). https://doi.org/10.1088/1742-6596/1725/1/012081

Bae, C. Y., Kim, B. S., Cho, K. H., Kim, I. H., Kim, J. H., & Kim, J. H. (2023). 10-year follow-up study on medical expenses and medical care use according to biological age: National Health Insurance Service Health Screening Cohort (NHIS-HealS 2002~ 2019). Plos one, 18(3), e0282466.

Bora, A., Sah, R., Singh, A., Sharma, D., & Ranjan, R. K. (2022). Interpretation of machine learning models using XAI - A study on health insurance dataset. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2022. https://doi.org/10.1109/ICRITO56286.2022.9964649

Dębicka, J., & Zmyślona, B. (2018). A Multiple State Model for Premium Calculation when Several Premium-Paid States are Involved (Vol. 10). https://www.researchgate.net/publication/327833599

Figur Humani, st, Hilman Wisnu, nd, Adyan Pamungkas Ganefi, rd, Dana Indra Sensuse, th, Jonathan Sofian Lusa, th, & Damayanti Elisabeth, th. (n.d.). Knowledge Management System Design of the Security Command Center in A Financial and Banking Company with Contingency Factors and Sprint Design Methodology.

Furman, E., & Zitikis, R. (2008). Weighted premium calculation principles. Insurance: Mathematics and Economics, 42(1), 459–465. https://doi.org/10.1016/j.insmatheco.2007.10.006

Hossain, M. S., & Rahman, M. F. (2023). Customer sentiment analysis and prediction of insurance products’ reviews using machine learning approaches. FIIB Business Review, 12(4), 386-402.

Kaushik, K., Bhardwaj, A., Dwivedi, A. D., & Singh, R. (2022). Article Machine Learning-Based Regression Framework to Predict Health Insurance Premiums. International Journal of Environmental Research and Public Health, 19(13). https://doi.org/10.3390/ijerph19137898

Kim, I. S., Yu, S. H., Kim, H. J., Chae, Y. M., Rhee, K. Y., & Sohn, M. S. (1986). Impact of regional health insurance on the utilization of medical care by the rural population of Korea. Yonsei Medical Journal, 27(2), 138-146

Krefting, J., Sen, P., David-Rus, D., Güldener, U., Hawe, J. S., Cassese, S., ... & Schunkert, H. (2023). Use of big data from health insurance for assessment of cardiovascular outcomes. Frontiers in Artificial Intelligence, 6, 1155404.

Lorenzen, T. J., & Vance, L. C. (1986). The Economic Design of Control Charts: A Unified Approach (Vol. 28, Issue 1).

Manulife. (2023). Mitos vs Fakta: 4 Kesalahpahaman Tentang Asuransi. Retrieved December 12, 2023, from https://www.manulife.co.id/id/artikel/mitos-vs-fakta-4-kesalahpahaman-tentang-asuransi.html

Mary Chittilappilly, R., Suresh, S., & Shanmugam, S. (2023). A Comparative Analysis of Optimizing Medical Insurance Prediction Using Genetic Algorithm and Other Machine Learning Algorithms. Proceedings of the 2nd IEEE International Conference on Advances in Computing, Communication and Applied Informatics, ACCAI 2023. https://doi.org/10.1109/ACCAI58221.2023.10199979

Panda, S., Purkayastha, B., Das, D., Chakraborty, M., & Biswas, S. K. (2022). Health Insurance Cost Prediction Using Regression Models. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, COM-IT-CON 2022, 168–173. https://doi.org/10.1109/COM-IT-CON54601.2022.9850653

Pitacco, E. (2014). Health insurance. Basic Actuarial Models, Cham, Switzerland: Springer Verlag.

Ramya, D., Manigandan, S. K., & Deepa, J. (2022). Health Insurance Cost Prediction using Machine Learning Algorithms. International Conference on Edge Computing and Applications, ICECAA 2022 - Proceedings, 1381–1384. https://doi.org/10.1109/ICECAA55415.2022.9936153

Salmons, H. I., Lu, Y., Reed, R. R., Forsythe, B., & Sebastian, A. S. (2022). Implementation of Machine Learning to Predict Cost of Care Associated with Ambulatory Single-Level Lumbar Decompression. World Neurosurgery, 167, e1072–e1079. https://doi.org/10.1016/j.wneu.2022.08.149

Shinde, A., & Raut, P. (2020). Comparative study of regression models and deep learning models for insurance cost prediction. Advances in Intelligent Systems and Computing, 940, 1102–1111. https://doi.org/10.1007/978-3-030-16657-1_103

Straitresearch. (2021, December 2). Health Insurance Market. https://straitsresearch.com/report/health-insurance-market

Technická univerzita (Košice, S., IEEE Hungary Section, IEEE Systems, M., & Institute of Electrical and Electronics Engineers. (2020). SAMI 2020 : IEEE 18th World Symposium on Applied Machine Intelligence and Informatics : proceedings : January 23-25, 2020, Herl’any, Slovakia.

Thejeshwar, T., Sai Harsha, T., Vamsi Krishna, V., & Kaladevi, R. (2023). Medical Insurance Cost Analysis and Prediction using Machine Learning. International Conference on Innovative Data Communication Technologies and Application, ICIDCA 2023 - Proceedings, 113–117. https://doi.org/10.1109/ICIDCA56705.2023.10100057

United Nations. (2022, December 2). Ensure healthy lives and promote well-being for all at all ages. https://sdgs.un.org/goals/goal3

Vijayalakshmi, V., Selvakumar, A., & Panimalar, K. (2023). Implementation of Medical Insurance Price Prediction System using Regression Algorithms. Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT 2023, 1529–1534. https://doi.org/10.1109/ICSSIT55814.2023.10060926




DOI: http://dx.doi.org/10.31602/jieom.v7i1.13802

Refbacks

  • Saat ini tidak ada refbacks.


Indexed By

 

 

 

This work is licensed under a Creative Commons Attribution 4.0 International License.