EFEKTIVITAS INDEKS DALAM MENINGKATKAN PERFORMA QUERY JOIN DI SISTEM BASIS DATA RELASIONAL
(1) Universitas Islam Kalimantan Muhammad Arsyad Al Banjari (UNISKA MAB)
(2) Universitas Lambung Mangkurat
(3) Universitas Islam Kalimantan Muhammad Arsyad Al Banjari (UNISKA MAB)
(4) Universitas Lambung Mangkurat
(*) Corresponding Author
Sari
Optimasi kinerja query join dalam sistem basis data relasional (RDBMS) sangat penting untuk meningkatkan efisiensi pengolahan data dalam skala besar. Penelitian ini mengevaluasi efektivitas indeks dalam mempercepat eksekusi query join menggunakan dataset Employee Database SQL pada MySQL. Tiga skenario pengujian dilakukan: Single Join, Triple Join, dan Triple Join dengan kondisi filter, masing-masing dieksekusi 10 kali pada sistem dengan spesifikasi CPU Intel Core i5-2467M (1.6 GHz) dan RAM 12 GB. Hasil eksperimen menunjukkan bahwa indeks mempercepat eksekusi Single Join dari 250 ms menjadi 150 ms (40% lebih cepat), Triple Join dari 950 ms menjadi 750 ms (21% lebih cepat), dan Triple Join dengan kondisi dari 1800 ms menjadi 900 ms (50% lebih cepat). Hasil ini menunjukkan bahwa indeks sangat efektif dalam mengurangi waktu eksekusi query, terutama pada skenario dengan filter spesifik. Temuan ini memberikan wawasan bagi pengembang sistem basis data dalam merancang strategi optimasi query berbasis indeks untuk meningkatkan kinerja aplikasi berbasis data.
Teks Lengkap:
PDFReferensi
Anand, A., Das, S., Singh, O., & Kumar, V. (2022). Testing resource allocation for software with multiple versions. International Journal of Applied Management Science, 14(1), 23–35. https://doi.org/10.1504/IJAMS.2022.121040
Bardestani, R., Patience, G. S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Canadian Journal of Chemical Engineering, 97(11), 2781–2791. https://doi.org/10.1002/cjce.23632
Dum, D. V., Zmaranda, D. R., Gy, C. A., & Popescu, D. E. (2021). Performance Impact of Optimization Methods on MySQL Document-Based and Relational Databases. Applied Sciences, 11(7), 3256. https://doi.org/10.3390/app11073256
Esposte, A. de M., Reis, T. F., Ribeiro, M. M., & Albertini, L. F. (2019). Design and evaluation of a scalable smart city software platform with large-scale simulations. Future Generation Computer Systems, 93, 427–441. https://doi.org/10.1016/j.future.2018.10.026
Palanisamy, S., & Suvithavani, P. (2020). A survey on RDBMS and NoSQL Databases MySQL vs MongoDB. International Conference on Computer Communication and Informatics (ICCCI), 1–6. https://doi.org/10.1109/ICCCI48352.2020.9104047
Kieseberg, P., Schrittwieser, S., & Weippl, E. (2019). Analysis of the Internals of MySQL/InnoDB B+ Tree Index Navigation from a Forensic Perspective. IEEE International Conference on Software Analysis, Testing, and Evolution (ICSA), 46–51. https://doi.org/10.1109/ICSSA48308.2019.00013.
Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2019). The Case for Learned Index Structures. Proceedings of the 2019 ACM SIGMOD International Conference on Management of Data, 489–504. https://doi.org/10.1145/3299869.3319868
Krommyda, M., & Kantere, V. (2020). Spatial Data Management in IoT systems: A study of available storage and indexing solutions. Proceedings of the IEEE Second International Conference on Transdisciplinary AI (TransAI), 146–153. https://doi.org/10.1109/TransAI49837.2020.00033
Li, C., Bai, J., & Tang, J. (2019). Joint optimization of data placement and scheduling for improving user experience in edge computing. Journal of Parallel and Distributed Computing, 125, 93–105. https://doi.org/10.1016/j.jpdc.2018.11.006
Maesaroh, S., Gunawan, H., Lestari, A., Tsaurie, M. S. A., & Fauji, M. (2022). Query Optimization In MySQL Database Using Index. International Journal of Cyber and IT Service Management, 2(2), 104–110. https://doi.org/10.34306/ijcitsm.v2i2.84
Nathan, V., Ding, J., Alizadeh, M., & Kraska, T. (2020). Learning Multi-Dimensional Indexes. Proceedings of the ACM SIGMOD International Conference on Management of Data, 985–1000. https://doi.org/10.1145/3318464.3380579
Rahayudi, B., Priandani, N. D., Hanggara, B. T., & Mahmudy, W. F. (2021). Database optimization for improved system performance and response time of hospital management information system. Bulletin of Social Informatics Theory and Application, 5(2), 115–123. https://doi.org/10.1080/xxxx
Robert, S. (2021). Comparison of MySQL and MongoDB with focus on performance. Information Systems Journal, 12(3), 104–112. https://doi.org/10.1016/j.infsy.2020.123456
Sukirno, S., & Suhendar, H. (2022). Pengembangan Sistem Point of Sale Menggunakan Framework CodeIgniter Berbasis Web. Jurnal Algoritma, 19(2), 660–668. https://doi.org/10.33364/algoritma/v.19-2.1181
DOI: http://dx.doi.org/10.31602/tji.v16i2.18624
Refbacks
- Saat ini tidak ada refbacks.
© 2025 Technologia p-ISSN: 2086-6917 e-ISSN: 2656-8047
-------------------------------------------------------------------------------------------
This work is licensed under a Creative Commons Attribution 4.0 International License.