Penerapan Gaussian Naive Bayes dan Analisis Komponen Utama dalam Klasifikasi Diabetes
(1) Fakultas Teknologi Informasi -UNISKA MAB Banjarmasin
(2) Fakultas Teknologi Informasi -UNISKA MAB Banjarmasin
(*) Corresponding Author
Sari
Teks Lengkap:
PDFReferensi
Abnoosian, K., Farnoosh, R., & Behzadi, M. H. (2023). Prediction of diabetes disease using an ensemble of machine learning multi-classifier models. BMC Bioinformatics, 24(1), 1–24. https://doi.org/10.1186/S12859-023-05465-Z/FIGURES/7
Alberti, K., Zimmet, P., Medicine, J. S.-D., & 2007, undefined. (2007). International Diabetes Federation: a consensus on Type 2 diabetes prevention. Wiley Online Library, 24(5), 451–463. https://doi.org/10.1111/j.1464-5491.2007.02157.x
Barus, A. C., Panggabean, T. M., Pakpahan, D., & Sirait, S. G. D. (2022). Verifikasi Kualitas Gambar Dengan Algoritma Support Vector Machine (SVM) Untuk Studi Kasus Ulos Batak Toba. Smart Comp :Jurnalnya Orang Pintar Komputer, 11(3), 473–483. https://doi.org/10.30591/SMARTCOMP.V11I3.3900
Choubey, D. K., Kumar, M., Shukla, V., Tripathi, S., & Dhandhania, V. K. (2020). Comparative Analysis of Classification Methods with PCA and LDA for Diabetes. Current Diabetes Reviews, 16(8), 833–850. https://doi.org/10.2174/1573399816666200123124008
Endocrinology, B. Z.-E., & 2015, undefined. (n.d.). The International Diabetes Federation World Diabetes Congress 2015. Europepmc.Org. Retrieved January 20, 2024, from https://europepmc.org/article/med/29632570
Ente, D. R., Thamrin, S. A., Arifin, S., Kuswanto, H., & Andreza, A. (2020). KLASIFIKASI FAKTOR-FAKTOR PENYEBAB PENYAKIT DIABETES MELITUS DI RUMAH SAKIT UNHAS MENGGUNAKAN ALGORITMA C4.5. Indonesian Journal of Statistics and Its Applications, 4(1), 80–88. https://doi.org/10.29244/ijsa.v4i1.330
Erlin, Yulvia Nora Marlim, Junadhi, Laili Suryati, & Nova Agustina. (2022). Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 11(2), 88–96. https://doi.org/10.22146/jnteti.v11i2.3586
Hardianto, D. (2021). TELAAH KOMPREHENSIF DIABETES MELITUS: KLASIFIKASI, GEJALA, DIAGNOSIS, PENCEGAHAN, DAN PENGOBATAN. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 304–317. https://doi.org/10.29122/jbbi.v7i2.4209
Kothapeta, H., Lakkampelly, S., Mandari, A., Sathyanarayana, M. M., & Vani, G. (2199). MULTIPLE DISEASE PREDICTION USING MACHINE LEARNING AND STREAM-LIT. In International Research Journal of Modernization in Engineering Technology and Science www.irjmets.com @International Research Journal of Modernization in Engineering. www.irjmets.com
Maniruzzaman, M., Kumar, N., Menhazul Abedin, M., Shaykhul Islam, M., Suri, H. S., El-Baz, A. S., & Suri, J. S. (2017). Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm. Computer Methods and Programs in Biomedicine, 152, 23–34. https://doi.org/10.1016/J.CMPB.2017.09.004
Saxena, R., Sharma, S. K., Gupta, M., & Sampada, G. C. (2022). A Comprehensive Review of Various Diabetic Prediction Models: A Literature Survey. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/8100697
Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., & Tang, H. (2018). Predicting Diabetes Mellitus With Machine Learning Techniques. Frontiers in Genetics, 9. https://doi.org/10.3389/FGENE.2018.00515
DOI: http://dx.doi.org/10.31602/tji.v16i2.15942
Refbacks
- Saat ini tidak ada refbacks.
© 2025 Technologia p-ISSN: 2086-6917 e-ISSN: 2656-8047
-------------------------------------------------------------------------------------------
This work is licensed under a Creative Commons Attribution 4.0 International License.